Matematika

Pertanyaan

Buktikan melalui induksi matematika
1/1(2) + 1/2(3) + 1/3(4) +....+ 1/n(n+1) = n/n+1

1 Jawaban

  • 1. untuk n = 1
    1/1(2) = 1/(1+1)
    1/2 = 1/2 (Terbukti)

    2. untuk n = k
    1/1(2)+1/2(3)+1/3(4)+...+1/k(k+1) = k/k+1
    (Benar)

    3. untuk n = k+1
    1/1(2)+1/2(3)+1/3(4)+...+1/k(k+1)+1/(k+1)(k+1+1) = (k+1)/(k+1+1)
    (k/k+1) + 1/(k+1)(k+2) = k+1/k+2
    k²+2k+1/(k+1)(k+2) = k+1/k+2
    (k+1)² / (k+1)(k+2) = k+1 / k+2
    k+1 / k+2 = k+1 / k+2
    (TERBUKTI)

Pertanyaan Lainnya