Matematika

Pertanyaan

[tex] \int\limits^ \pi _0 {cos^{2} x} \, dx =[/tex]

1 Jawaban

  • [tex] \int\limits^ \pi _ 0 { cos^{2} x} \, dx = \int\limits^ \pi _ 0 { \frac{1 + cos 2x}{2} } \, dx [/tex]
     
                       [tex]= \frac{1}{2} \int\limits^ \pi _0 {1 + cos 2x} \, dx [/tex]
           
                       [tex]= \frac{1}{2} ( x + \frac{1}{2} sin 2x) \left \{ {{ \pi } \atop {0}} \right. [/tex]
     
                       [tex]= \frac{1}{2} x + \frac{1}{4} sin 2x \left \{ {{ \pi } \atop {0}} \right. [/tex] 
     
                       [tex]= [ \frac{1}{2} \pi + \frac{1}{4} sin 2 \pi ] - [ \frac{1}{2} (0) + \frac{1}{4} cos 2 . 0][/tex]
            
                       [tex]= [ \frac{1}{2} \pi + \frac{1}{4} (0) ] - [ 0 + \frac{1}{4} sin 0][/tex]
           
                       [tex]= \frac{1}{2} \pi - 0 - 0 - 0[/tex]
           
                       [tex]= \frac{1}{2} \pi [/tex]
          
                      

Pertanyaan Lainnya